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A study is made of the coupling between chemical reaction and diffusion in 
a dense fluid. Our analysis utilizes the projection operator formalism and a 
generalized Langevin equation that is based on irreversible, phenorneno- 
logical equations of motion instead of conventional Hamiltonian mechan- 
ics. It also is shown that this same "non-Hamiltonian" theory provides a 
simple way of deriving Kawasaki's mode-mode coupling theory of diffusion. 
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1, I N T R O D U C T I O N  

The bimolecular reaction A + B -+ C involves two distinct steps. The first 
of these is related to processes, associated with various hydrodynamic modes 
of the system, by which pairs of reactant molecules are prepared (brought 
together) under conditions suitable for reaction. The second is the elementary 
reactive event, the rate of which depends on chemical properties of the 
individual molecules and on the energetics at the moment collision occurs. 
The objective of the present investigation is to develop a theory of the 
coupling between these hydrodynamic and reactive modes (1-3) which is 
simpler and more flexible than the well-known mode-mode coupling theory 
of Kawasaki. (r To accomplish this we construct a "non-Hamil tonian" 
version (5) of the familiar projection operator and generalized Langevin 
equation theory of Zwanzig (6) and Mori. (7) 

The overall rates of the fast, condensed phase reactions (such as fluores- 
cence quenching and radical reactions) that are of primary interest to us here 
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usually are limited by the rates at which reactive pairs of molecules can 
diffuse together. Thus, diffusion is the dominant hydrodynamic mode con- 
tributing to the rate of this special class of reactions called "diffusion con- 
trolled. ''(8) This is the only hydrodynamic mode that we consider in this 
introductory paper. 

Prior to applying the non-Hamiltonian theory to the specific problem 
of diffusion-controlled reactions we illustrate how the method works by 
performing a simple derivation of Kawasaki's well-known result for the 
coupling of viscous and diffusive hydrodynamic modes. 

2. P R O J E C T I O N  O P E R A T O R  F O R M A L I S M  

In the first part of this section we review and summarize several aspects 
of the Zwanzig-Mori projection operator method and consider two identities 
that are needed for the applications treated in Sections 3 and 4. The second 
part is devoted to generalizing this projection operator formalism to situations 
where the exact, microscopic equations of motion have been replaced with 
irreversible, phenomenological equations. 

2.1. Hami l ton ian  M e t h o d  

We describe the macrostate of a system by a set of real-valued collective 
dynamical coordinates or field variables (&(r, t)} and assume for these 
variables the equations of change 

A, = [ ~ ,  A,]p~ - i~-WA, (1) 

Here ~ denotes the Hamiltonian function and s the associated Liouville 
operator. This operator will be Hermitian (~r = ca,) unless the system is 
immersed in an external magnetic field. 

The formal solution of Eq. (1) can be written in the form A,(r, t) = 
exp(LWt)A,(r) with A~(r) - A,(r, t = 0) or as the ket ]Ai(t)) = exp( is  

We define the inner product ( A ( t ) I B )  - (A*( t )B)eq ,  where (A( t )  I = 
(exp(-is is the adjoint of [A(t)) and where the bracket (...)eq indicates 
an equilibrium ensemble average. Let us now assume that s  is Hermitian. 
Then, because this ensemble is stationary, it follows that 

(A*(t)B)r  =- ( A ( t ) I B )  = ( A [ B ( - t ) )  =-- ( A * B ( - t ) ) e q  (2) 

The quantities on which we focus our attention are the Fourier-Laplace 
transforms, 

I; f G=j(k, z) - i dt exp(izt)  dar exp ( - i k . r )  a~(r, t) 

= -(A~](z - s  I m z  > 0 (3) 
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of the correlation functions Gu(r - r', t - t ') = <A~(r, t)As(r', t'))eq. How- 
ever, the observable associated with Gu(r, t) is not Gu(k, z) but the space and 
time Fourier transform 

Gu(k, oJ) =- dt dar exp[i(cot - k.r)] G~j(r, t) 
c o  

= 2 Im Gu(k, z = w + i0) (4) 

Let us now introduce the projection operatorP = 1 - Q - [AYx~7 I(AjI, 
where xu(k) denotes the space Fourier transform of the static correlation 
function ( A ~ [ A j > -  (A~(r)Aj(r'))ea. Here and henceforth the summation 
convention applies to repeated indices. 

The generalized Langevin equations for the functions Gu(k, z) are (9,1~ 

[ z ~  - ~ k ( k )  - ~,k(k, z)]C~j(k, z) = -X~(k )  (5) 

Because D~(k) = i(A~IAyxz~ ~ is independent of z it can be interpreted as an 
instantaneous response due to interactions among the constituent particles of 
the system. It often is called the frequency matrix or mean field term. The 
dynamic response of the system is described by the damping term or memory 
matrix, %~k(k, z) -= (A~[ Q[z - QSFQ]- IQIAyxz~  1. The positive-semidefinite 
property of Im det{Z(k, z = w + i0)} is related to the irreversible behavior of 
the many-body system. 

This separation of the response into the two parts, ~ and Z, provides 
many valuable insights into the behavior of the many-body system but the 
price paid for this is the occurrence in the memory matrix of the modified 
Liouville operator Q ~ Q .  It would be delightful if this complicated operator 
could be eliminated from the formalism. Indeed, what one vastly would 
prefer to Eq. (5) are relationships among the correlation functions Gu(k, z) 
and the elements ~u(k, z ) -  (A~]Q(z-  5r 1 [or O~j(k, z) -= 
(A~[(z - 5~) - 1 l.,/k)X~ 1 = - <A~(t)[ Ak)(k, z)xg~ .~] of a modified memory mat- 
rix. ( ~  The means for accomplishing this are provided in Appendix A, where 
we show that the matrices �9 and Z are related to one another by the formula 

X(k, z) = [1 + eP(zl - D ) - ~ ] - z ~  (6) 

This relationship has been used to transform the traditional Langevin equation 
into a renormalized form and it has played an essential role in the construction 
of the renormalized kinetic theory. (~2~ Several investigators have derived 
alternative forms of this relationship by using Zwanzig's projection operator 
techniques. (~3) Because the Zwanzig and Mori methods differ only with 
respect to the observational point of view, as do the Schr6dinger and Heisen- 
berg pictures in quantum mechanics, the two representations are entirely 
equivalent. (~4~ 
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Many previous studies of nonlinear transport theory have used the 
important identity (6) either explicitly or implicitly. Applications of this 
relationships can become extremely complicated. However, there are im- 
portant special cases, unnoticed by previous investigators, for which it yields 
very simple connections between q5 and E. In illustrating this we shall avoid 
nonessential complexities by restricting our attention to the case of a single 
dynamical variable A. The generalized Langevin equation appropriate to this 
situation is given by 

aAa(k, z) = -- [z -- flAA -- 2AA(k, Z)I-I)iAA (7) 

or, equivalently, by 

%GA~(k, t )  + inAAGAA(k, t )  -- d t '  2AA(k, t -- t ')GAA(k, t') = 0 (7') 

where 

and 

2AA(k, Z ) :  [1 + eAA(Z- flAA)-ll-~OAA (s) 

a)AA = <AI Q(z - 5 r  (9) 

In most cases ~AA = i{'dlA)XAA ~ vanishes because of time-reversal in- 
v a r i a n c e .  Consequently, GAA -~ --(Z - -  2 A A ) - I • A A ,  

EAa = <A](z - Q&fQ)-I[A>)~yA~ = z(z + (bAA)-I(bAA, 

and *AA = <i/I(Z -- 5e)- 11~>22) = - <A(t)]A>(k, z);~X2. Suppose now that A 
is a "relevant variable, ''<1~ that is, a variable whose characteristic relaxa- 
tion time is very long. Then A either must be (i) a conserved variable with an 
equation of motion of the form ~4(k, t) = ikJA(k, t) or (ii) a variable associ- 
ated with a broken symmetry, in which case XAA OC k-2. In either event both 
2AA and C~AA are of order k 2 and so at long wavelengths, where the system is 
almost spatially uniform, ZAA and (I)AA become equal. Thus, in the long- 
wavelength, long-time "hydrodynamic limit," 

lim lira ZAA(k , Z) : lim lim (~)Aa(k, Z) (10) 
z ~ i 0  k~O z ~ t 0  k-~O 

We shall encounter this case in Section 3 in connection with Kawasaki's 
mode-mode coupling theory. The order of the limits is important here 
(related to the "plateau-value" problem discussed in Ref. 7), whereas it is 
not in the following example. 

The situation just described is the most familiar, but there are others, 
such as that considered in Section 4, where one is concerned with the hydro- 
dynamic limit of a nonconserved variable for which ~AA # O. These problems 
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often can be solved with the aid of the relationship Z22 = cb22 - f22~, which 
is the form of Eq. (8) that is applicable to all values of k when z is equal to 
zero. The theory of diffusion-controlled reactions presented in Section 4 
provides an example of this sort. 

Before proceeding further there are a few remarks that we would like to 
make about Eq. (6) or Eq. (8). Suppose that A is the velocity variable v. Then 
~, = F/m,  where F is the total force and exp(iQ~LPQt)l~(O )> = f(t) is the 
fluctuating, random force. Therefore, Eq. (6) or (8) provides a connection 
between the autocorrelation function of the total force and the autocorrela- 
tion function of the random force. This makes it likely that Eq. (6) can be of 
aid in resolving the recent controversy over the calculation of the conductivity 
of liquid metals, at~ 

We conclude this subsection by presenting a trivial but important 
identity. LetP1 =- 1 - Q~ -= [ A I > x ~ ( A I [  andP2 = 1 - Q2 = [AI>x/-~(All 
+ IA2>xs with X~ = (ALIA1> and X2 = (A~[A2> and where (A~IA2> = 
0. Then, according to Appendix B, the memory function 

2A~A~(k, z) =- <dl lQ~(z  - Q I ~ e Q ~ ) - I Q ~ I A I > x ;  ~ (11) 

can be expressed in the form 

XAlal(k, z) = ~,11(k, z) + [~o~ + ~ ( k ,  z)] 

x [z - ~o~ - ~ ( k ,  z ) ] - l [ o ~  + ~ ( k ,  z)] 0 2 )  

with 

oJ,j = i<r 1 (13) 

%(k, z) = (A~[ Q2(z - Q z ~  Q2)-1 Q2 IAj>x[ 1 (14) 

and where i, j = 1 or 2. In these last two formulas the repeated indices are 
not  to be summed. 

The identity (12) is useful in dealing with two coupled equations of 
motion that occur in the example studied in Section 4. 

2.2.  N o n - H a m i l t o n i a n  M e t h o d  

Up to this point the analysis has dealt exclusively with systems whose 
dynamics are assumed to be governed by an exact Hamiltonian mechanics. 
The advantages of rigor which are enjoyed by this approach must be weighed 
against the very great mathematical and conceptual difficulties associated with 
these extremely complicated equations of motion. Thus, great cleverness and 
very powerful mathematical techniques are needed to extract even qualita- 
tively correct results from such a detailed picture of the system's dynamics. 

An alternative to this is the "non-Hamil tonian" method, which has been 
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studied in connection with the superionic conductor problem. ~5) The idea is 
to abandon the detailed dynamical equations of the exact theory in favor of a 
simpler, more tractable dynamics that incorporates some of the collective 
characteristics of the many-body system. Thus, in place of the exact, micro- 
dynamical equations of motion A~ = iSfA, we adopt phenomenological equa- 
tions A, = - iqzA~, where q / r  qP is non-Hermitian. This lack of Hermiticity 
is a consequence of the intrinsic irreversibility of the phenomenological equa- 
tions of motion. Because of this irreversibility, the ensemble average, which 
we denote here by the double bracket <<...)), does not share the stationarity 
property, Eq. (2), of the Hamiltonian theory. 

Analogous to G,j(z) we define the correlation function 

G~j(z) = <<A~(O)lAs(t)))(z) = <<A~lexp(- iqI t )Aj)) (z  ) 

: -<<A,l(z - q/)-llA~>)(z) (15) 

and obtain in place of Eq. (5) the equations 

[z~,~ - (/,~ - E,~]Gk~(k, z) = - 2,J (16) 

where 

fi,j(k) = <<A~]~CAk>>2~ I (17) 

Z~j(k, z) = <<A,lqlQ(z - ~gQ)-IQ~IA~>>2~,. 1 (18) 

and P =  1 -  Q -  IA,>>2j~<<Aj]. The static correlation function 2,J = 
<<A, IAj)) is equal to X~ = <A~]Aj) because the former does not explicitly 
involve the irreversible, non-Hermitian operator og. 

It often happens that the operator Qq / i s  either Hermitian or anti- 
Hermitian, that is, QqlAk =- iQAk = ql~A~ or Q~ =- iQA~ = ql~Ak, where 
#/n and q/~, respectively, are Hermitian and anti-Hermitian operators. In this 
event the matrices E and ~ can be written in the forms 

E~) = + <<A,] a(z - qlQ)-IQ[A~))x~j ~ (19) 

and 

~If > = + (<A~I Q(z - ql)-1QIA~>>x~I (20) 

where the plus and minus signs apply to the Hermitian and anti-Hermitian 
cases, respectively. 

'In some cases QO//may coincide with either �89 + q/*) or (1/2i)(~' - q/,),2 
the Hermitian and anti-Hermitian parts of the non-Hermitian operator ~ .  
The operator P~'  then will exhibit symmetry opposite to that of its comple- 
ment, QOg. An example of this is provided in Section 3. However, it also is 

2 When (1/2i)(q/ - q/*) > 0, q/is called a dissipative operator; see Ref. 17. 
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possible, as we shall see in Section 4, for Q ~  to be only a part of �89 + ~t)  
or (1/2i)(~ - ~,t). In this case Pq /may  be Hermitian or anti-Hermitian or it 
may be neither. The operator ~ of Section 4 is anti-Hermitian and so, of 
course, are the corresponding operators P~'  and Q~'. 

Let us suppose that P~' is either Hermitian or anti-Hermitian. Then since 
((A~]~Ak)) = ((A~IPqlA~)), the frequency matrix defined by Eq. (17) 
becomes 

f i~ '  =- i< < Ad A~) )x~ ~ = -T- i< < Ad &> >x~ 1 (21) 

Here the plus and minus (upper and lower) signs refer to the cases where P~' 
is Hermitian and anti-Hermitian, respectively. 

3. K A W A S A K I ' S  M O D E - M O D E  C O U P L I N G  T H E O R Y  

Here we demonstrate the efficacy of the formalism developed in the 
preceding section by using it to derive Kawasaki's (4~ formula for the re- 
normalized diffusion coefficient. The system is a dilute solution of tagged 
particles, the concentration and current of which we denote by n(r, t) and 
j(r, t), respectively. Our analysis of this system will be based on the continuity 
equation 

~tn(r, t) = -V . j ( r ,  t) (22) 

and on the phenomenological relationship 

j(r, t) = - D b  Vn(r, t) + j~(r, t) + F(r, t) (23) 

The "ba re"  diffusion coefficient Db is assumed to depend only on the 
density and temperature of the solvent. For the convective current ]c(r, t) we 
choose the same function 

jc(r, t) = v(r, t)n(r, t) (24) 

of the solvent velocity v(r, t) as that used by previous investigators518,t9~ 
There is abundant evidence that in the hydrodynamic regime, Eqs. (23) and 
(24) provide an accurate approximation to the current of solute particles. 

By discarding the fluctuating, random current F(r, t), we obtain for 
n(r, t) the equation of motion 

Otn(r, t) = Db V2n(r, t) - V.[v(r, t)n(r, t)] (25) 

Thus, this phenomenological treatment of diffusion in a dilute solution can 
be identified as an example to which the non-Hamiltonian formalism of 
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Section 2.2 is applicable. The single variable n(r, t) corresponds to the set of 
collective variables {A~(r, t)}, and DbV 2 -  V.[v(r, t) corresponds to the 
operator - i  q/. Accordingly, we introduce the projection operator P = 
In>>2-1<Lnl with 2(k) = <<n]n>)(k) and so conclude that 

Plh>> = ]n>>x-~<<n[~>> = [{-Db V2n(r, t)}t=o>> (26a) 

and 

Q[~>> = (1 - P)l/z>> = [{-V,[v(r,  t)n(r, t)]}t=o>> (26b) 

Consequently, Qq/is  Hermitian and Pq / i s  anti-Hermitian. 
From the first of these equations we see that in the present example the 

(1 by 1) matrix ~(k), defined by Eq. (18), is given by 

~(k) = i (<n[h>>(k)~- l (k)  = - k 2 D b < ( n [ n > > ( k ) ~ - l ( k )  

-= -/kZD~ (27) 

Furthermore, because the equation of motion, Eq. (25), ensures that h(k, t) oc 
k, the identity (8) implies that the two memory functions 

Z+(k, z) = <(hi Q(z  - o ~ a ) - l a [ h > > ( k ,  z)2-1(k) (28) 

and 

~+(k,  z) = ((h I a ( z  - ee)-~alh>>(k, z))?-~(k) (29) 

will be equal in the long-wavelength limit. Thus, in this limit 

"2+~, z) z ~+~, z) 

= ((V.[v(r, 0)n(r, 0)]l(z - ~')-llV'.[v(r', 0)n(r', 0)]>>(k, z)2-~(k) 

= k,kj((v~(r ,  0)n(r, 0)](z - ~g)-llvj(r', 0)n(r', O))>(k, z)2-1(k) 

= - k , k j ( ( v i ( r ,  0)n(r, 0)[v~.(r', t)n(r', t)>>(k, z)~?-l(k) 

; f ~ t d3k' at e'~Co,~,(k - k', t ) a = ( k ,  t))?-l(k) (3O) - - ik ikj  ~ 

where G~B(k, t) denotes the space Fourier transform of the correlation func- 
tion ((A(r, 0)lB(r', t)>>. To obtain this result use has been made of Eq. (15), 
of the factorization approximation ((v~nlvjn>> - <(v~lvj>><<nln>>, and of the 
convolution theorem for Laplace transforms. 

Because the fluid is isotropic the velocity autocorrelation function can 
be resolved into the sum, 

d,,,j(k, t) = (3,j - k~kj /k2)G~(k ,  t )  + (k ,k~/k2)G~(k ,  t )  
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of transverse and longitudinal contributions. Consequently, the hydro- 
dynamic limit of the memory function N+(k, z) is given by 

lira lim ,E § (k, z) 
Z'-*iO I r  

- 
t )G. . (k ,  - - ik ik j  ~ dt Gv, v , ( -  , t ) x -  1(0) 

= - i k 2 [ A D t r  + ADz] 

f 
dak'  d t (1  - 2 ~t~ , - , t ) G . . ( k  , = ~, ) 6 v o ( - k ,  t )x -XO)  ADtr 

f d3 'k  dt t z 2 G ~ ( -  k ' ,  ~ ' t)c.~(k, t)x- ~(o) ADz = 

with 

(31) 

(32a) 

(32b) 

and where/~ = k ' . k / k ' k .  
According to Eq. (16), the density autocorrelation function associated 

with this phenomenological theory is equal to 

G . . ( k ,  z )  = - [z  - f i 0 0  - ~ ( k ,  z ) ] -  i x ( k ) .  

By using Eqs. (27) and (31), we therefore conclude that the hydrodynamic 
limit of this correlation function is - [ z  + ik2D]-~x(O) with D = Db + 
ADtr + ADz. This would be identical to Kawasaki's result, D = Db + ADtr, 
were it not for the longitudinal term ADz. In most cases of interest ADz can, 
indeed, be neglected in comparison with ADtr. Thus, in the vicinity of the 
critical point ADz diverges less strongly than ADtr and, far from the critical 
point, ADt~ produces the dominant t -3/2 contribution to the long-time tail of 
the nonlinear hydrodynamic theory, whereas ADz varies asymptotically as 
t-512.(zg) 

4. T H E  C O U P L I N G  B E T W E E N  R E A C T I O N  A N D  D I F F U S I O N  

Here we examine a single-phase system in which the reversible reaction 

A + B  k t ' C  
kr 

occurs. The dynamical variables are taken to be the displacements ~n~ = 
n~ - n, ~q (i = A, B, C) of the species concentrations from their equilibrium 
values. In terms of these the rate of reaction is given by 

r = --k lnAnB + krnc = --kln~ - krn~%nA + k ,3nc  - klanA3nB (33) 
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We adopt for the variables 8n,(k, t) the phenomenological equations of 
motion 

~t(SnA) =-k2[D.ASn. + D.~3nB + D.c3nc] + r 

et(Sn~) = -k~[D~.3nA + D~r~3n~ + D~c3nc] + r (34) 

~t(Snc) = - k ~ [ D c . S n .  + Dc~3nB +DccSnc] - r 

with diffusion coefficients D~ that satisfy the relationships D~y--D~, 
~ myD~ = 0. (The first of these are the familiar reciprocal relations. The 
second ensure that the total diffusive flux of mass is identically zero.) 

4.1. S ingle -Var iab le  Analysis 

The simplest, most primitive analysis of this system can be based on the 
single variable 8n. and on the simplified equation of motion 

at(SnA) = - ( k 2 D . .  + krn~q)(3nA) -- kr(3nA)(ann) =- --i~(3nA) (35) 

We then identify P with the projection operator [3n.) )xL2((3n.] ,  where 
XAa(k) -- (3nAl3nA)(k) = [n~%(r -- r')](k) = n~. q. From this and Eq. (35) it 
follows that, at t = 0, P ~ , ( 3 n . ) = - ( k ~ D a a  + kln~q)(3nA) and Q~t(3nA)= 
-- kt(3n.)(3n~ ). Consequently, both P ~  and Qq/are anti-Hermitian. 

and 

From the non-Hamiltonian theory of Section 2.2 we conclude that 

f t . .  = i{(3nA] 3h.))XL2 = - i ( k2D. .  + k~n~ q) (36a) 

~ AA = < < an.l ql Q(z - all) - ~ Qql] 3n.)  )xL~ 

= - ( ( 3 f i . [  Q ( z  - ql) -~ Q[ 3 ~ * ) ) x Y ~  

= kfl((Sn.~SnBl 8n^(t)~nB(t)))(k, z)XL. ~ 

d31c' dt e'~%..A(k -- k', t )S .~B(k' ,  t)x;1 (36b) - ik~2 

where S~,~,(k, t) = ((n,(r, 0)]n,r', t)))(k) is the density autocorrelation func- 
tion of the chemical species 7. To obtain the last of the expressions in (36b) 
we have used the factorization approximation. 

In order to generate an estimate of this integral we use for S.,~,(k, t) 
the approximation n~ q e x p ( - D ~ k 2 t ) .  Then, in the long-wavelength, low- 
frequency limit 

f dak f f  dt exp[--k2(DAA + D~B)t] ~AA ~ ikr2n~ q 

r ~~ 4rrk2dk 1 
t/9" 2nB ~q / ~ - (37) 

Jo (2~r) 3 k2(D** + D ~ )  
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Here kc is the short-wavelength cutoff value of the wave number. If  R 
(=  Ra + RB) is the molecular separation at which reaction occurs, then the 
lower limit on the wavelength scale is A = 4R. This corresponds to a largest 
wave number k~ = 2~r/4R. Consequently, 

lim lim ~AA -- in~qkr~/kD (38) 
z~:O k~O 

with 

kD = 4~(R~ + R.)(DA~ + D~.) (39) 

To obtain the first-order approximation to the correlation function 
GaA(k, z) = -XAA/(Z -- (2AA -- ZAA)  we ignore the resonance structure of  the 
memory function "~AA(k, Z) by replacing it with 

~ ,  0) = [~,zA(k, 0) - fi~r2(k)]-i 

Thus, in the hydrodynamic limit, 

G A A ( k  , z )  ~ XAA __ n.~ q 
z - [(~A/(f~AA -- ~)AA)](k = O, Z = O) Z + ik1Rng q (40) 

where ks R, given by 

1/k f  R = 1/k1 + 1/kD (41) 

is the renormalized rate constant for the forward reaction. 
This expression for the renormalized rate also can be written as the sum 

iksRng q = ff2~A/(~)aA -- ~Aa) = ~AA[1 + g)2.~q)aA + ((~2.~aA) 2 + ""] 

= (~AA[1 + @ + @ + ~ +'"1 (42) 

of repeated contributions from the "r ing"  

A - k "  A 
_ _ @ 
~22(1)AA 

B B 
k 

composed of two diffusive elements. Thus, in this theory higher order mode 
couplings are represented approximately in terms of the single mode-mode 
coupling d i a g r a m @ .  This is analogous to the repeated ring approximation 
of kinetic theory. (8) It is remarkable that the simple identity Z(k, 0 ) =  
~)AA(k)~(k, 0)/[~AA(k)- ~AA(k, 0)1 generates this special class of  higher 
order mode coupling diagrams. 
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4,2. Two-Variable Analysis 

This more thorough analysis of the problem will be based on the two 
equations of motion 

~t(SnA) = - - ( k 2 D A A  + kln~q)(SnA) -- (kZDAB + kln~q)(3nB) -- k1(3nA)(3nB) 

(43a) 

~t(3n)B = - ( k 2 D B A  + krn~ q) - (k2DBB + kln~q)(3n~) - k1(3nA)(3ns) (43b) 

and the projection opera torP = ]3nA))X2~((3nA] + ]SnB}}Xff~((3nB] ; XAB -- 
(3nn[3ns)  = O. 

Because pog is anti-Hermitian the frequency matrix can be written as 
~2,j = i((A, lA~)}Xh ~ or, more explicitly, 

co 1 

,eq/.~q and D is the matrix of diffusion coefficients Here, coo - - ik lng  q, ~ - -A I,~B , 

for this quasi-two-component fluid mixture. If  we interpret the absence of 
product (C) diffusive terms from Eqs. (43) as equivalent to the approximation 
that all diffusion coefficients for the species C are zero, then the formulas 
D~s = Djl and ;~s msDsi = 0 imply that DaB = DBA = --~DAA and DB~ = 
~2DaA with v ~ - m a / m s .  Hence 

D = DAA _ ~  vq 2 

This approximation is used throughout the remainder of this section. 
Since Q~//also is anti-Hermitian, ~,j. = - ((A,[ Q(z - ~ )  - ~ Q I A k ) ) x h  ~ 

or 

where a --- - ((Sfi A]Q(z - ~ ) -  ~ Q l ~ a ) )  = k#(  ( ~na ~n~ I3na( t )3nB( t ) ) )(k, z). 

According to Eqs. (37) and (38), a =" ingq(kt~/k~)(~(k, z) with ~b(0, 0) = 1. 
When Eqs. (43) and (44) are substituted into Eq. (6) it is found that 

~,(k, z ) =  P(k, z)[ll ~:~:] (46a) 

where 

P(k, z = 0) = cooa/(o~o - ~) (46b) 

To determine GAA(k, Z) = --2AA/(Z -- ~AA -- "~AA) we identify 0 and "~ 
given by Eqs. (44) and (45) with the matrices co and a that appear in Eq. (12). 
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Next, we set z equal to zero in F(k, z) in order to eliminate complexities 
associated with the resonance structure of ,E. It then is easy to verify that 

~/(1 + ~) 1/(1 + 0 ] 
GAA(k, z) ~ - n ~  q z + ikZDAAf(f, t~) + z + ik,Rn~q(1 -+ f )~-  ?k2DAAg(f, v~)j 

(47) 

wi th f ( f ,  v ~) = (~ + v~)(1 + ~)(1 + ~)-: and 

g(~, ~) _-- (1 - a)(1 - ~ ) (1  + ~)-:  

The first of the two terms in Eq. (47) is associated with a pure hydrodynamic 
pole, whereas the second pole is reactive. 

The results generated by the more complicated and complete three- 
variable analysis differ only slightly from those derived here. Thus, in place 
of Eq. (47) one obtains 

CAA(k, Z) Z --n~"[ (~ + z~)f(l+ O(# ~)+ ~ + ~) 

where 

+ 1/(1 + ~ + ~) ] 
z + ikrRn~q(1 + ~ + ~) + O(k~) I 

(48) 

'7 - I c T / g l n ~  ~ = n X " / n ~ "  

Although it might appear that our results would be equally valid for all 
values of ~: = .eq/.eq .eq/.eq and v ~ mA/mB, they are in fact reliable , t  A / ~ t B  , 7] -~- I t  A / t t C  , 

only for the extreme limiting values of these parameters, namely, ~:, V << 1 or 
~, V >> 1. The reason for this is that we have limited our considerations to 
coupling between the reactive and diffusive modes. A more thorough analysis 
would include the coupling of the reactive mode to other hydrodynamic 
coordinates such as the viscous and thermal modes. (:) 

5. C O N C L U D I N G  R E M A R K S  

'We have shown how to modify the projection operator formalism and 
generalized Langevin equations of Zwanzig and Mori so that they are applic- 
able when the exact dynamical equations of motion are replaced by intrin- 
sically irreversible, phenomenological equations of motion. Although this 
"non-Hamil tonian" theory is based on a cruder, less precise mechanics than 
the conventional, dynamically exact theory, many benefits are gained in 
exchange for this loss of microscopic accuracy. Thus, computations are 
relatively simple even for very complicated systems and one is able to incor- 
porate directly into this theory approximate, phenomenological descriptions 
of the relevant physical processes or events. This theory paves the way for 
applications of statistical mechanical techniques to systems consisting of 
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aggregates which are much more complicated than small molecules and for 
which a detailed microscopic characterization would be either irrelevant or 
hopelessly impractical to conduct. 

Both of the applications considered in this paper are based on phenome- 
nological equations of  motion. However, the theory also is suitable for systems 
characterized by "effective" Hamiltonian operators, in which case the non- 
Hermitian operator q/is related to the effective Hamiltonian J:off by - i Y / =  
[~:~]p~. This permits application of the theory to systems for which 
phenomenological model Hamiltonians exist. 

A P P E N D I X  A 

Here we shall derive the relationship, Eq. (6), between the two memory 
function matrices 

and 

Z~s = (ei~ I Q(z  - Q~q~)-ZQ[/l~)x~ ~ (A1) 

definitions and the identity ( z -  s  Q S e ) - ~ =  From these 
(z - 2 ~ ) - 1 P ~ ( z  - Q ~ ) - t  it follows that 

= <A,I Q(z - L,e)-:[(z - ~ )  + ~ ] P ~ ( z  - a ~ ) - ~ Q l A ~ ) x ~ :  ~ 

Then, since P Q  = O, P -~ [Az)X~mI(Am[, and ~ = i ~ A ~  we see that 

= thmZ~ s (A3) 

where 

~',m =- ( A d Q ( z  - ~e)-~lA;~x~ ~ 

= ( A d O ( z  - ,~e)-Z(e  + Q ) I A ; ) x ; ;  ~ 

= O,m + z - l ( A d O ( z  - L ,e) -~(z  - L,e + ~)p{A,)• ~ 

(A4) 

The matrix forms of Eqs. (A3) and (A4) are z ( O -  Z ) =  aZ and 
z(~ - 4)) = e~2, respectively. From the second of these it follows that ~ = 
zq)(z  - f ~ ) - L  When this is substituted into the first we find that z(qb - Z) --- 
zrb(z - ~ ) - l Z  or 

z = [1 + ~ ( z  - a ) - 1 1 - 1 o  (AS) 
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A P P E N D I X  B 

Our  object ive here is to derive the ident i ty  (12) o f  Section 2.1. To 
accompl i sh  this we begin with two o r thogona l  dynamica l  variables  A~ and  
A2 and  the associa ted pro jec t ion  ope ra to r  P2 = [Az)xs + IA~>xs ~<A~I. 
Because <A~IA2> = 0 we a d o p t  the condensed  no ta t ion  X~ - X, =- (A~IA~> 

f o r / =  1,2.  
The general ized Langevin  equat ions  (5) app rop r i a t e  to this s i tuat ion may  

be wri t ten in the mat r ix  representa t ion  

(B1)  
rs r~~JLG~I G~,~.J x~.J 

Here  F~-t ~ = z - (co~ + ~n) ,  Fi-~ ~ = -(o~i2 + cr~), F~~ ~ = -(oJ21 + cr2~), 

a n d  F~2 ~ = z - (oJ22 + crz2) and  the integrals  ~o~j and  % are those defined by 
Eqs.  (13) and  (14) o f  the text, 

F r o m  Eq. (B1) we immedia te ly  conclude tha t  F~-z~Glz + 1~21G~ = 0 or  

G21 --- -1~221~-~G~. Consequent ly ,  the re la t ionships  Fz~IG~ + F~-2~G2~ = 
-X~ can be wri t ten in the fo rm 

o r  

where 

(z - co n - ~ n ) G n  = - X l  

~,11 = ~11 + (,o1~ + ~ ) ( z  - o ~  - o22)-1(o~2~ + ~ )  

is the same as ZAzA1 of  the text. 

(B3)  

(B4)  
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